基于人工智能的肠道黏膜观察质量评估系统研究
作者:
作者单位:

武汉大学人民医院消化内科

作者简介:

通讯作者:

中图分类号:

基金项目:

湖北省卫生健康委员会创新团队项目(WJ2021C003)


An artificial intelligence‑based evaluation system for the quality of intestinal mucosal observation
Author:
Affiliation:

Department of Gastroenterology,Renmin Hospital of Wuhan University

Fund Project:

Innovation Team Project of Health Commission of Hubei Province (WJ2021C003)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    目的 建立基于人工智能的全面衡量肠道黏膜观察质量的监控系统,并探索该系统评分与腺瘤检出率(adenoma detection rate,ADR)之间的关系。方法 整合黏膜暴露程度评估模型、肠道准备评估模型、退镜速度监测模型3个模型,形成肠道黏膜观察质量评估系统(MQnet)。MQnet评分(0~3分)由黏膜暴露程度评分(0~1分)、肠道准备评分(0~1分)、退镜速度评分(0~1分)相加得到。回顾性分析来自武汉大学人民医院2020年7月1日至10月15日的854例肠镜受试者的859个视频资料,计算每例次肠镜的MQnet评分。使用Spearman相关性分析,评估MQnet评分和ADR之间的关系。结果 MQnet统计的评分段为2.0~<2.1分、2.1~<2.2分、2.2~<2.3分、2.3~<2.4分、2.4~<2.5分、2.5~<2.6分6个分数段,每个分数段对应的肠镜例次数分别为50、109、150、223、191和88,每个分数段对应的ADR分别为18.0%(9/50)、21.1%(23/109)、20.7%(31/150)、22.4%(50/223)、27.7%(53/191)和28.4%(25/88)。MQnet评分与ADR之间存在显著的正相关(Spearman系数为0.943,P<0.010)。结论 MQnet评分通过三个维度反映了肠道黏膜的观察质量,其与ADR之间呈现正相关的趋势,可用于量化评估肠镜检查质量。

    Abstract:

    Objective To establish an artificial intelligence-based evaluation system to comprehensively assess the quality of intestinal mucosal observation, and to explore the relationship between the score of the system and adenoma detection rate (ADR). Methods The intestinal mucosal observation quality assessment system (MQnet) was constructed by integrating the mucosal exposure assessment model, bowel preparation assessment model, and colonoscopy withdrawal speed monitoring model. MQnet score (0-3 points) was composed by adding mucosal exposure score (0-1 points), bowel preparation score (0-1 points), and withdrawal speed score (0-1 points). Data of 859 videos of 854 colonoscopy subjects at Renmin Hospital of Wuhan University from July 1st to October 15th 2020 were retrospectively analyzed. MQnet score of each colonoscopy was calculated and Spearman correlation analysis was conducted to assess the relationship between the MQnet score and ADR. Results The calculated MQnet score segments were 6 score bands of 2.0-<2.1, 2.1-<2.2, 2.2-<2.3, 2.3-<2.4, 2.4-<2.5, and 2.5-<2.6, with the number of colonoscopies corresponding to each band being 50, 109, 150, 223, 191, and 88, and with ADR corresponding to each band being 18.0% (9/50), 21.1% (23/109), 20.7% (31/150), 22.4% (50/223), 27.7% (53/191), and 28.4% (25/88), respectively. There was a significant positive correlationship between MQnet score and ADR (Spearman''s coefficient of 0.943, P<0.010). Conclusion MQnet score reflects the quality of intestinal mucosal observation through 3 dimensions, showing a positive correlationship with ADR, which can be used to quantitatively evaluate the quality of colonoscopy.

    参考文献
    相似文献
    引证文献
引用本文

王君潇,姚理文,吴练练,等.基于人工智能的肠道黏膜观察质量评估系统研究[J].中华消化内镜杂志,2024,41(4):269-274.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-23
  • 最后修改日期:2024-04-03
  • 录用日期:2023-01-10
  • 在线发布日期: 2024-04-03
  • 出版日期:
您是第位访问者

通信地址:南京市鼓楼区紫竹林3号《中华消化内镜杂志》编辑部   邮编:210003

中华消化内镜杂志 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司