深度学习技术对胃肠道间质瘤与平滑肌瘤超声内镜图像的鉴别诊断价值
作者:
作者单位:

1.湖北文理学院附属医院,襄阳市中心医院;2.苏州大学附属第二医院消化内科;3.苏州大学计算机技术学院

作者简介:

通讯作者:

中图分类号:

基金项目:

苏州市“科教兴卫” 青年科技项目(KJXW2019013)


Value of deep learning technology for the differential diagnosis of endoscopic ultrasonography images of gastrointestinal stromal tumors and leiomyomas
Author:
Affiliation:

Xiangyang Central Hospital, Affiliated Hospital o f Hubei University of Arts and Science

Fund Project:

"Promoting Health through Science and Education" Youth Science and Technology Project of Suzhou City (KJXW2019013)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    目的 尝试构建基于深度学习技术的胃肠道间质瘤(gastrointestinal stromal tumors,GISTs)与平滑肌瘤(leiomyomas,LM)超声内镜图像分类模型,并验证其鉴别诊断价值。方法 回顾性纳入2014年10月至2021年10月在苏州大学附属第二医院接受超声内镜检查且经外科手术或内镜下切除后病理确诊的69例GISTs和73例LM病例,每例病例选取1张清晰且有典型病变的超声内镜图片,利用留出法将每种疾病图片按训练集图片数比验证集图片数为8∶2的比例分入训练集和验证集,最终由113张(55张GISTs和58张LM)超声内镜图片组成训练集,由29张(14张GISTs和15张LM)超声内镜图片组成验证集,训练集用于对深度学习模型进行训练与优化,验证集用于对分类模型进行验证,主要观察指标包括鉴别诊断的灵敏度、特异度、阳性预测值、阴性预测值和准确率。结果 利用Resnet 34网络结构建立的分类模型对GISTs与LM进行鉴别诊断的准确率趋于0.89,较Resnet 50网络结构建立的分类模型(0.81)的分类性能更佳。基于Resnet 34网络结构构建的分类模型对验证集中超声内镜图片进行鉴别诊断的灵敏度、特异度、阳性预测值、阴性预测值和准确率分别为85.71%(12/14)(95%CI:67.38%~100.00%)、93.33%(14/15)(95%CI:80.71%~100.00%)、92.31%(12/13)(95%CI:77.82%~100.00%)、87.50%(14/16)(95%CI:71.30%~100.00%)和89.66%(26/29)(95%CI:78.57%~100.00%)。结论 深度学习技术用于GISTs与LM超声内镜图像的鉴别诊断是可行的,可为临床医师对两者的鉴别提供辅助诊断意见。基于Resnet 34网络结构建立的深度学习模型对GISTs与LM超声内镜图像进行鉴别诊断的准确性较高。

    Abstract:

    Objective To construct a classification model for endoscopic ultrasonography (EUS) images of gastrointestinal stromal tumors (GISTs) and leiomyomas (LM) based on deep learning technology, and to verify its value for differential diagnosis. Methods From October 2014 to October 2021, 69 patients of GISTs and 73 of LM who underwent EUS and were pathologically confirmed by surgery or endoscopic resection in the Second Affiliated Hospital of Soochow University were retrospectively studied. One clear EUS image with typical lesion was selected for each case. Using the hold-out method, the images of each disease were divided into the training set and the validation set according to the ratio of the number of images in the training set to the number of images in the validation set, which was 8∶2. Finally, 113 EUS images (55 GISTs and 58 LM) were used to form the training set, and 29 EUS images (14 GISTs and 15 LM) were used to form the validation set. The training set was used to train and optimize the deep learning model, and the validation set was used to verify the classification model. The main observation indicators included the sensitivity, the specificity, the positive predictive value, the negative predictive value and the accuracy of differential diagnosis.Results The accuracy of the classification model established by Resnet 34 network structure in the differential diagnosis of GISTs and LM tended to be 0.89, better than the classification model established by Resnet 50 network structure (0.81). The sensitivity, the specificity, the positive predictive value, the negative predictive value and the accuracy of the classification model based on Resnet 34 network structure for differentiating EUS images in the validation set were 85.71% (12/14, 95%CI: 67.38%‑100.00%), 93.33% (14/15, 95%CI: 80.71%‑100.00%), 92.31% (12/13, 95%CI: 77.82%‑100.00%), 87.50% (14/16, 95%CI: 71.30%‑100.00%) and 89.66% (26/29, 95%CI: 78.57%‑100.00%), respectively.Conclusion It is feasible to use deep learning technology in the differential diagnosis of EUS images of GISTs and LM, which can provide auxiliary diagnostic opinions for clinicians. The deep learning model based on Resnet 34 network structure shows higher accuracy in the differential diagnosis of EUS images of GISTs and LM.

    参考文献
    相似文献
    引证文献
引用本文

郭康丽,朱建伟,黄张浩,等.深度学习技术对胃肠道间质瘤与平滑肌瘤超声内镜图像的鉴别诊断价值[J].中华消化内镜杂志,2024,41(6):449-454.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-10
  • 最后修改日期:2024-06-04
  • 录用日期:2023-01-05
  • 在线发布日期: 2024-06-27
  • 出版日期:
您是第位访问者

通信地址:南京市鼓楼区紫竹林3号《中华消化内镜杂志》编辑部   邮编:210003

中华消化内镜杂志 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司